
1

Conga 3.1 User Guide – Supplement
Version dated 18 July 2018.

Introduction
The version of Conga included with Dyalog version 17.0 has the version number 3.1. The only new
functionality in version 3.1 compared to 3.0 is support for a different format for decimal floating-point
numbers used by version 17.0. This Conga 3.1 User Guide Supplement is a slightly enhanced version of the
supplement that was released with Conga 3.0 and Dyalog APL version 16.0. It contrasts version 3.0 to
earlier versions and provides guidance on how to take advantage of the significant new features of versions
3.x when compared to 2.x.

Version number 3.0 will be used in the remainder of this document: everything in this document applies
equally to versions 3.0 and 3.1; the new document provides some additional detail on features introduced
with Conga version 3.0. The material found this supplement will be merged into a forthcoming version of
the Conga User Guide. Revisions of this document and the Conga User Guide will be released through the
Documentation Centre as they become available.

Using the Conga User Guide
With the exception of some sample applications described in the document, which have been moved from
the distributed workspace conga.dws to new locations in Dyalog releases 16.0 and 17.0, the Conga User
Guide can be used with any recent version of Conga, 2.7, 3.0 or 3.1: Although it allows new usage patterns,
Conga version 3.0 is designed to be upwardly compatible with Conga version 2.7 and earlier releases.

If your application requires any of the sample components that have been (re)moved, refer to the section
titled Code Compatibility and Distribution for instructions on how to download conga_v2.dws, which is
provided as a temporary bridging solution.

http://docs.dyalog.com/16.0/

2

New Features of Version 3.0
Conga version 3.0 provides many new features designed to make it easier to write network-based
applications:

1. Multiple Isolated "Roots" make it possible for separate components running in the same Dyalog
process to use Conga without interfering with each other in any way. This allows development tools
to use TCP connections without interfering with the application they are being used to develop.

2. New Server modes efficiently support different server styles or requirements:
• FIFOMode: Process incoming messages in strict chronological order (does not allow

selection of messages arriving on individual connections)
• ConnectionOnly: The server object will only receive connection events; the application is

expected to spawn individual APL threads to listen on each connection object separately.

3. Timeout and Disconnect as events instead of error codes 100 and 1119. Timeouts and
disconnections can optionally be signalled as events to simplify server logic.

4. Temporarily prevent new connections by setting the Pause property.

5. Sent event allows programs transferring large amounts of data to avoid flooding buffers with
untransmitted data by requesting a Sent event when the last byte has been transmitted, and using
this to trigger transfer of the next data block.

6. Transmit files without first reading their data into the APL workspace.

7. HTTP protocol support means that, rather than receiving text blocks and deciphering them, you
can elect to receive HTTPHeader, HTTPBody, HTTPChunk, HTTPTrailer events after Conga has
parsed the incoming messages. This greatly simplifies the handling of HTTP messages.

8. WebSocket support means that HTTP connections can be upgraded to bi-directional web sockets,
allowing asynchronous bidirectional data transmission for highly interactive user interfaces.

9. Allow or Deny connections from specific address ranges to support applications that only want to
service connections made from certain locations. Provides simple protection against denial or
service or other malicious attacks.

10. Conga 3.1 upgraded to support for GnuTLS 3.5.16 to provide secure communications. Conga 3.0
previously upgraded to support for GnuTLS 3.4.16.

11. Dynamic loading of secure socket support makes it unnecessary to install or ship the secure part of
Conga with your application if you do not intend to make use of secure features.

3

12. Shared Unicode/Classic library means that the same .so or .dll file is used by Classic and Unicode
versions of Conga (32 and 64 bit are still separate).

13. Simpler configuration – by default, Conga libraries are always loaded from the folder where the
interpreter executable is located, bypassing the need for LIBPATH or similar environment variables.

14. A numeric Version property makes it easier to write applications that need to know which version
of Conga they have available.

15. Experimental UDP support: Undocumented; contact support@dyalog.com for more information.

16. Numerous new samples and tools.

Compatibility and Code Distribution
Conga 3.0 is designed to be compatible with Conga 2.x, but the APL code that wraps the Conga libraries has
been substantially rewritten to provide support for multiple isolated roots and to provide new, simplified
ways to create client and server applications. At the same time, a number of samples have been moved
from the distributed conga.dws to other locations – and a small number have been removed completely.

• The TODServer example has been completely retired.

• The FTPClient, along with many of the utilities that used to be found in the HttpUtils and Samples
namespaces, have been moved to new locations (see the Code Libraries Reference Guide).

• The RPCServer and WebServer examples are replaced by new code that uses new features of Conga
3.0. These can be found in the [DYALOG]/Samples/Conga directory and are described in this
document.

If your application requires any of the components that have been (re)moved, then a workspace called
conga_v2.dws is available from the Conga section of the Tools Download page on https://my.dyalog.com.
The conga_v2.dws workspace contains all the old code but loads the Conga 3.1 DLLs that are provided with
Dyalog version 17.0. If you do decide to use the conga_v2.dws workspace, Dyalog asks that you notify
support@dyalog.com and inform us why you felt this was necessary so that we can consider reinstating
code and improve future releases.

Initialisation
To take advantage of some of the new features of Conga version 3.0, you will need to make changes to the
way that you initialise Conga-based applications.

Existing Conga 2.x-based applications typically initialise Conga by calling (DRC.Init ''). Unless you want
to make use of the multiple-root feature described later in this document, we recommend creating a
default instance of Conga 3 as follows:

 iConga←Conga.Init ''

The above expression connects to the Conga root object named DEFAULT, which is shared by all
applications that use an empty right argument to Init. If you name the instance variable DRC, existing

mailto:support@dyalog.com
https://my.dyalog.com/
mailto:support@dyalog.com

4

application code that refers to DRC (except for the call to DRC.Init) should subsequently work
unchanged. In other words, if you replace the expression (DRC.Init '') with (DRC←Conga.Init '')
and ensure that you have the Conga namespace rather than DRC loaded into your workspace, the rest of
your Conga 2.x application should run unchanged.

Many of the code samples that used to reside in the Samples namespace in earlier Conga workspaces
have been withdrawn as better alternatives now exist. A cut-down set of the most widely used samples can
be found in the Samples namespace in conga.dws. A new set of samples can be found in the
Samples/Conga directory, and tools such as the new HttpCommand which is intended to replace the old
Samples.HttpGet function, can be found in the Library/Conga directory.

New Features in Conga 3.0

1. Multiple Isolated Roots
As the use of Conga has grown, it has become common for more than one component in an application to
use Conga, leading to potential name conflicts between client and server objects created, and clashes
between different state settings. In particular, when an application and the tools used to maintain it both
use TCP communications, they need to be independent of each other. Each may need to be restarted or
reset without interfering with the other. Conga version 3.0 allows each component to have its own "Root"
under which Conga objects are created and perform operations (like deleting all existing Conga connections
in order to restart) without fear of interference with other components.

Prior to Conga version 3.0, all components in the same process used the same DRC namespace: the first
user would call DRC.Init and received a clean return code, and subsequent calls to Init warned that
Conga was already initialised. If a component decided to reset or re-initialise Conga, all other components
would be affected by this.

With Conga version 3.0, the DRC namespace is still provided for backwards compatibility, but – as
mentioned in the previous section - it is recommended that you use the Conga.Init function to create
or select a specific named root for your application or component rather than calling DRC.Init. For ad
hoc use, you can use an empty right argument to connect to the default root, but for an application that
might need to manage the state of Conga, Dyalog recommends using a right argument to identify your
application.

 iConga←Conga.Init 'MyApp'

The above statement can safely be called anywhere in your application; if a root with that name already
exists, then a reference will be returned to the existing root instance. If you want to be sure that a new
instance is created, you can use Conga.New. In this case, an empty argument will generate a new unused
root name, and a non-empty argument will signal an error if the root name is already in use. The function
RootNames can be used to get a complete list of existing roots:

 iC1←Conga.Init '' ⍝ Use the default root
 iC2←Conga.New '' ⍝ Create a new one with a generated name
 Conga.RootNames
 DEFAULT IC1

5

To re-initialise your root, erase the reference (all references) to the instance; it will be cleaned up, and you
can create a new one.

Warning: The intention is not that you create a large number of roots. The process of creating and tearing
down roots is expensive and complex. Components might need a separate root, but you should not create
new roots just to (for example) create queries on the internet – in this situation, use the default root that
you can get a reference to by passing an empty argument to Conga.Init.

2. New Server Modes
The default mode for a server allows an application to selectively wait on the entire Server, receiving both
connection-related events and data transmissions to all or part of the tree of objects that make up the
server. As usage patterns evolve, Conga is also evolving to provide modes that are better suited to, or
tuned for, these patterns.

2.a FIFOMode
For high volume services with hundreds or thousands of connections, the cost of providing filtering
functionality becomes unacceptable. In addition, the filtering mechanism can lead to some connections
receiving better service than others. The FIFOMode switch turns off the ability to call the Wait function
on a subset of a Server object hierarchy. In return, you get significantly less CPU consumption, and are
guaranteed that messages come off the queue in strict chronological order of arrival.

Enable FIFOMode for a server using SetProp:

 iConga.SetProp 'S1' 'FIFOMode' 1

With FIFOMode enabled, attempts to Wait on a connection object that is a child of the server will fail with
error 1142 ERR_FIFOMODE.

2.b ConnectionOnly
Some server applications have a structure that makes it convenient to launch an APL thread for each client
connection and leave that thread running for the duration of that client session. The ConnectionOnly switch
enables a mode where Wait on the server object will only ever report Connect events; individual
application threads are expected to call Wait on the connection that they are managing.

Samples/RPCServices/ThreadedRPC contains an example of a server that uses ConnectionOnly and runs a
thread for each connection.

3. Timeout and Close as Events
Many application developers have found it inconvenient that "normal" events such as a timeout due to
inactivity or the closing of a connection are reported as if they were errors with non-zero return codes from
Wait, rather than being classified as events.

In Conga version 3.0 it is possible to receive timeout and close as events. However, as this is a breaking
change, it is not enabled by default and you need to explicitly set the EventMode property to enable it. The
property is set on the root object and applies to all clients and servers created as children of that root.

6

Dyalog strongly recommends that you enable EventMode, and it is likely that this will become the default
in a future version of Conga.

To enable Event Mode, use:

 iConga.SetProp '.' 'EventMode' 1

Once EventMode is set, return codes 100 and 1119 will no longer issued. The different formats for the
result from Wait are:

'EventMode' 0 'EventMode' 1
100 'TIMEOUT' ''
1119 'CLOSE' ''

0 'S1' 'Timeout' 100
0 'S1' 'Close' 1119

4. Temporarily Prevent New Connections to a Server
If a server needs a break from incoming connections (for example, because it is preparing to shut down for
maintenance or is overloaded), this can be achieved the Pause property. The Pause property has three
possible settings:

Setting Effect
1 Keeps the listening socket open but does not accept new incoming connections. Connection

attempts that have not timed out on the client side will be accepted when Pause is set to 0.

2 Closes the socket but keeps the server object alive. When Pause is set to 0 the socket will be
re-created.

0 Resume normal operations.

For example:

 iConga.SetProp 'S1' 'Pause' 1 ⍝ Do not accept connections

5. Sent event
If you are transmitting a large amount of data in chunks, Conga allows you to make repeated calls to the
Send function without waiting for the previous send to complete. This can cause large amounts of data to
accumulate in buffers either in Conga or the network layer, which might be undesirable – it also makes it
difficult to cancel an operation, since a large number of operations are already queued.

In Conga version 3.0, you can request a receipt upon the completion of the actual transmission by
appending a 3 following the data passed to the Send function:

 iConga.Send 'C1' data 3
0
 iConga.Wait 'C1'
0 C1 Sent 0

When using Command mode, the Sent event will be overridden by the answer on a command; if the
response to a command arrives before you enter the next Wait, you will simply get the response and the
Sent event will be suppressed.

7

6. File Transmission
When an APL-based server needs to transmit the entire contents of a file, earlier versions of Conga
required that you first read the contents of the file into the APL workspace and then pass it to the Send
function – an inefficient process.

Send now accepts a two-element nested vector; the first element is data to be transmitted first and the
second element contains a file name, the contents of which will be transmitted after the initial data. The
first element allows you to prepend information to the transmission, where necessary. For example:

 iConga.Send 'C1' ('' 'c:\mywebsite\index.html')
0

The file transmission mechanism does not apply to Command mode connections, in which each
transmissions is an APL array which is transmitted in binary format.

7. HTTP Protocol Support
A common use of Conga is to act as an HTTP client (retrieving data from web sites or making web service
requests) or as an HTTP server (serving up data managed by an APL application). In previous Conga versions
this required buffering data and parsing the HTTP protocol in APL.

Beginning with Conga version 3.0, you can set the mode of any Client or Server to be HTTP. If you do this,
the normal Receive and Block events are replaced with events that signal the arrival of a complete piece of
HTTP protocol: HTTPHeader, HTTPBody, HTTPChunk and HTTPTrailer. This not only simplifies the task of
receiving HTTP data, it also significantly improves performance by moving the parsing into multi-threaded,
asynchronous C code dedicated to this task.

By default, Conga does not provide any further processing of received HTTP messages (for example, taking
headers apart or decoding base-64 encoded data). Setting the DecodeBuffers property on the client or
server will cause Conga to parse the pieces of the HTTP message and return them in a more convenient
format.

When transmitting data, you are required to generate valid HTTP messages. The only support that Conga
version 3.0 provides is to add a valid Content-Length header when transmitting a file (see File
Transmission).

The HttpUtils namespace, which can be loaded using]Load HttpUtils, provides code that can be
used to work with HTTP requests and responses. This is located in the Library/Conga directory and
described in the Code Libraries Reference Guide.

Additional details on HTTP protocol support are provided later in this document.

8. Web Sockets
An established HTTP connection can be upgraded to bi-directional websocket connection; this allows both
client and server to transmit data at any time rather than sticking to the normal cycle of the client making a
request followed by a server response.

8

Web Socket Upgrade – Client Side
It is the client that requests the upgrade. To upgrade a Conga-based client, set the WSFeatures property to
whether you want to automatically accept a positive response from the server (1) or you need to validate
the response and confirm it (0). Unless you are familiar with websocket internals, auto-upgrade is
recommended.

 iConga.SetProp clt 'WSFeatures' 0 ⍝ Do not automatically accept
0

Next, set the WSUpgrade property to a three-element vector containing a URL, hostname (normally the
same one you already connected to) and any necessary header information that the particular server you
are connecting to may be looking for in order to decide how to handle the connection. For example:

 iConga.SetProp 'C1' 'WSUpgrade' ('/' 'localhost' 'some-setting: value')
0

Now call Wait – if the server accepts your request the response will be a WSResponse event, with data
containing header information that the server has decided to send:

 res
0 C1 WSResponse HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-Websocket-Accept: G/cEt4HtsYEnP0MnSVkKRk459gM=

If WSFeatures had been set to 1, the response would have been a WSUpgrade event:

0 C1 WSUpgrade 0

If auto-accept is not enabled, we now need to examine the headers, decide whether they are OK, and
finally set the WSAccept property:

 iConga.SetProp 'C1' 'WSAccept' ((4⊃res)'')
0

You are required to confirm the headers that you want to accept as the first element. The second element
is not used but required for symmetry with the server call (see the next section). The next call to Wait
should return a WSResponse event, after which the socket can be used as a websocket.

0 C1 WSResponse HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-Websocket-Accept: G/cEt4HtsYEnP0MnSVkKRk459gM=

Web Socket Upgrade – Server Side
When a client requests a web socket upgrade, the server will either receive a WSUpgrade (if it has
WSFeatures set to 1) or a WSUpgradeReq event from a call to Wait:

9

0 S1.CON00000000 WSUpgradeReq GET / HTTP/1.1
 Host: localhost
 Upgrade: websocket
 Connection: Upgrade
 some-setting: value
 Sec-WebSocket-Version: 13
 Sec-WebSocket-Key: KSO+hOFs1q5SkEnx8bvp6w==

The format of the messages is the same; in the event of a WSUpgrade the 4th element is for information
only and the upgrade has been done, otherwise you need to follow a similar pattern as the client, either
closing the connection if the request is denied or responding with a confirmation of the received headers
plus any information that need to be sent to the client:

 iConga.SetProp 'S1.CON00000000' 'WSAccept' ((4⊃res)'server-says: hello')
0

At this point, even before the client has received a WSResponse (if it is a Conga client, or the equivalent in
JavaScript or some other programming language), the socket is considered open and the server should be
able to transmit data. However, it may be prudent to wait for the client to initiate communications, as final
confirmation that the websocket is operational.

Transmitting Data on a Web Socket
Once an HTTP connection has been upgraded to a Web Socket, the Send function can be used to transmit
data. The specification of the data to send must be a 2 or 3 element vector, where the first element is the
data to be transmitted as a character or integer vector and the second element is a Boolean that declares
whether this is the final transmission in a sequence. An optional 3rd element specifies the "operation code";
the opcode can be 1 for Text (data must be character and will be converted to UTF-8), 2 for Binary (values
between ¯128 and 127) or 0 for a “continuation”, in which case the data must have the same type as your
earlier transmission. For example:

 iConga.Send 'C1' ('Hello there' 1 1)
0

Incoming data is returned by iConga.Wait in the form of a WSReceive event, which returns the same
data elements as the argument to Send described above: (data final opcode).

9. Allow or Deny Connections from Specific Address Ranges
Sets of IPv4 and IPv6 addresses that connections will be allowed from can be specified – or conversely
ranges that will be denied. This means that you do not need to perform validation of valid peer addresses in
APL application code.

Address ranges are set by setting the AllowEndPoints or DenyEndPoints properties when a server is started.
If both are specified, then the intersections between the ranges will be disallowed. Each set of ranges is
specified in the format:

10

┌→───┐
│ ┌→───────┐ ┌→──┐ │
│ │property│ │ ┌→──┐ ┌→──────────────────────────┐ │ │
│ └────────┘ │ │ ┌→───┐ ┌→───┐ │ │ ┌→───┐ ┌→───────────────┐ │ │ │
│ │ │ │IPv6│ │fe80::d189:fd4:7003:a0a3/120,fe80::9df3:f956:84f5:12ab/120│ │ │ │IPv4│ │192.168.202.1/24│ │ │ │
│ │ │ └────┘ └──┘ │ │ └────┘ └────────────────┘ │ │ │
│ │ └───┘ └───────────────────────────┘ │ │
│ └───┘ │
└──┘

Where "property" is replaced by either AllowEndPoints or DenyEndPoints. You can specify IPv4 and/or IPV6
sections and have any number of ranges in each section.

For example:

 allow←,⊂'IPV4' '192.168.1.1/127,10.17.221.67/75'
 iConga.Srv '' 'localhost' 8080 ('AllowEndPoints' allow)

Will cause the server to accept connections only from IP addresses 192.168.1.1 through 192.168.1.127 and
10.17.221.67 through 10.17.221.75.

10. Support for GnuTLS 3.5.16
In Conga 3.1, secure socket support is built upon GnuTLS version 3.5.16 (3.0 uses 3.4.16). Compared to
Conga 2.7, the internal details of how certificates are handed have changed significantly, but there should
be no user-visible changes except that secure connections are more likely to succeed and that it is possible
to use certificates that are stored in the Microsoft Certificate store for Servers as well as clients. Conga
version 3.0 connections will provide Server Name Indication and Session Tickets – but none of this is visible
from the APL application.

11. Dynamic Loading of Secure Socket Libraries
The secure socket libraries, with names beginning with congannssl, are loaded on demand when the first
secure connection is created. If you do not include these libraries when installing applications that use
Conga, you will be able to use all non-secure features of Conga. Any attempt to use secure features will fail.

12. Shared Unicode/Classic Library
The same .dll or .so library is now used by Classic and Unicode editions of Dyalog APL. This should have no
user-visible effects other than that the file name is the same for both editions.

13. Simple Configuration
By default, Conga libraries are always loaded from the directory where the interpreter executable is
located, bypassing the need for LIBPATH or similar environment variables. This simplifies the installation of
Conga-based applications, since Conga will work if all the required DLLs are placed in the same folder as the
interpreter without requiring further configuration of the system.

13. Numeric Version Property
Version now returns a 3-element integer vector containing the major and minor version numbers,
followed by the SVN revision number of the source code used to build the current version. For example:

 iConga.Version
3 1 1405

11

14. Experimental UDP Support
UDP support is available but is still being prototyped in collaboration with potential users. Please contact
support@dyalog.com for more information.

15. Numerous New Samples
Several new classes and namespaces are provided as examples of how to construct different types of
services, as well as utilities to make it easier to make client requests of HTTP and other services. The
[DYALOG]/Library/Conga directory contains FtpClient, HttpCommand and HttpUtils; these are described in
the Code Libraries Reference Guide.

The Samples/Conga directory is cloned from the GitHub repository https://github.com/Dyalog/samples-
conga. The GitHub repository, and the documentation that it contains, are likely to be updated as features
are added and corrections made. We recommend that you visit it periodically. At the time of Dyalog version
17.0's release it had three sub-folders which provide code samples or utilities that might be useful in
providing or consuming Conga-based services.

The GitHub repository https://github.com/Dyalog/conga-apl contains the source code for the conga
workspace, and within it there is a directory named Tests. The Tests directory contains the test scripts used
by Dyalog Ltd to test Conga version 3.1. These tests also provide working examples of old and new Conga
features. Contributions are very welcome!

Directory CertTool
This directory currently contains a single sample that shows how the GnuTLS certTool can be used to
generate self-signed certificates.

Directory HttpServers
This directory contains several HTTP server classes which can be use as arguments to the new Conga.Srv
function. Most of the samples can be loaded and run using a recipe similar to the following:

]Load Samples/Conga/DocHttpRequest
 iSrv←Conga.Srv 8088 DocHttpRequest
 iSrv.Start

]Load HttpCommand
 (rc headers data)←HttpCommand.Get 'http://localhost:8088/index.html'

Directory RPCServices
This directory folder contains examples of simple servers that can be used to make remote procedure calls
using Conga's Command mode, in which each transmission consists of an APL array.

mailto:support@dyalog.com
https://github.com/Dyalog/samples-conga
https://github.com/Dyalog/samples-conga
https://github.com/Dyalog/conga-apl

12

HTTP Protocol Support

Enabling the HTTP Protocol
The HTTP protocol can be enabled specifying 'http' as the mode parameter when then client or server is
created.

 client ← iConga.Clt 'C1' 'www.dyalog.com' 80 'http'
 server ← iConga.Srv 'S1' 'localhost' 8080 'http'

Receiving HTTP Messages
Whether acting as a client or server, the process of receiving HTTP messages is the same and will follow one
of three patterns.

1) HTTP Header only. The entire message is contained in the message header. This is typical with the
HTTP GET method – all of the information is passed in the HTTP header and there is no body. This
is indicated by a 0 (zero) value in the Content-Length HTTP header field.

2) HTTP Header and Body. The message is split between the HTTP header block and the HTTP body
block. The body contains the data or payload for the message. The size of the body is indicated by
the Content-Length header field.

3) HTTP Header, one or more Chunks, followed by a Trailer. When the payload is too large, or is being
generated spontaneously, the payload can be split and transmitted in several chunks. A trailer,
possibly empty, is sent after the last chunk. Chunked mode is indicated by the Transfer-Encoding
header field having the value "chunked" and there being no Content-Length header field.

Conga version 3.0's HTTP mode introduces four events, one for each of the types of message above. The
events are HTTPHeader, HTTPBody, HTTPChunk and HTTPTrailer. When any of these events occurs, the
format of the event's data element depends on the setting of the server/client/connection object's
DecodeBuffers property. Each HTTP event has a related, additive, DecodeBuffers value. When
DecodeBuffers is not set for an HTTP event, Conga will return a simple character vector that you will then
need to parse on your own. When DecodeBuffers is set, Conga will do the parsing and return an array of
elements that are meaningful to the particular event.

Typically, you will set DecodeBuffers to 15 to decode the data for all HTTP-related events.

 iConga.SetProp obj 'DecodeBuffers' 15

where obj is the connection, server, or client object.

13

Event/Value Data format without DecodeBuffer set Data format with DecodeBuffer set

HTTPHeader 1 FirstLine, CRLF, Headers, CRLF,CRLF

For a request, the first line is an HTTP command, a URI
and HTTP version:
GET /index.html HTTP/1.1

For a response, the first line is HTTP version, HTTP
status code and HTTP status text:
HTTP/1.1 200 OK

Subsequent lines have HTTP headers
Host: www.someplace.com
User-Agent: Dyalog/Conga
Accept: */*
Accept-Encoding: gzip, deflate

A Content-Length header with a value of 0 indicates the
message consists of a header only and you have
received the entire message.

If there is a Transfer-Encoding header with a value of
'chunked', the message will be sent in chunked format
and you will need to loop and receive some number of
chunks and ultimately a trailer.

A 4-element array whose first 3 elements vary
based on whether the message is a request or
response.

[1] Method (request) or HTTP version (response)

[2] URI (request) or HTTP status code (response)

[3] HTTP version (request) or HTTP status
(response)

[4] 2-column matrix of header name/value pairs
 [;1] header name
 [;2] header value

Note: your application may still need to do
further decoding of the header values (e.g. some
values may be Base64 encoded)

HTTPTrailer 2 '0', CRLF, Trailers, CRLF

Character vector (possibly empty) of lines separated by
CRLF.

Each line contains an HTTP header.

Upon receipt of the trailer, you have received the entire
message.

A 2-column matrix of header name/value pairs

[;1] header name
[;2] header value

Note: your application may still need to do
further decoding of the header values (e.g. some
values may be Base64 encoded)

HTTPChunk 4 HexChunkLength, [;Chunk-Extension(s)], CRLF, Chunk-
Text, CRLF

A 2-element array of

[1] character vector chunk message text

[2] 2-column matrix of chunk-extension
name/value pairs
 [;1] chunk-extension name
 [;2] chunk-extension value

HTTPBody 8 Character vector of the message body Character vector of the message body

Sending HTTP Messages
The HTTP-related event types are used to receive HTTP messages. To send an HTTP message you can either

• Compose a properly formatted HTTP message as a character vector and pass it to Send
• Pass Send a 5-element array. The contents of the first three elements depend on whether the

message is a request or a response.
[1] HTTP method (request) or HTTP version (response)
[2] URI (request) or HTTP status code (response)
[3] HTTP version (request) or HTTP status test (response)
[4] 2-column matrix of header name/value pairs

14

[5] character vector message body
 or a 2-element vector of ('' 'filename') when sending the contents of a file

HTTP Utility Libraries
As noted earlier in this document, Conga itself does no further processing of the message data; any
additional processing is the responsibility of the user. To address this situation, Dyalog has provided two
utility libraries, HttpCommand and HttpUtils, in the [DYALOG]/Library/Conga/ directory; these can be
loaded using the SALT Load function. Both of the following statements will load HttpUtils, though the
latter is suitable for running under program control. To load HttpCommand, substitute HttpCommand
for HttpUtils in the statements below.

]Load HttpUtils
 ⎕SE.SALT.Load 'HttpUtils'

HttpUtils and HttpCommand are maintained in the GitHub repository found at
https://github.com/Dyalog/library-conga. If you access the GitHub repository rather than simply using the
versions installed with Dyalog APL, you will be able to see the revision history, download the latest versions
and participate in the development by reporting issues and by posting questions and suggestions.

HttpCommand is a stand-alone utility to act at an HTTP client, sending HTTP messages and receiving
responses. It can be used to interact with web services, retrieve web pages and other information from the
internet. HttpCommand is documented in the Code Libraries Reference Guide.

HttpUtils is a namespace containing classes and utility functions to manipulate HTTP messages.
HttpUtils was conceived and developed specifically in support of Conga 3.0's HTTP mode and the
HTMLRenderer GUI object introduced in Dyalog version 16.0. As HttpUtils is a very new library, we
welcome suggestions for improvements and additional features.

HttpUtils has two primary classes, HttpRequest and HttpResponse. These can both be used by
clients and servers.

When acting as a client:
1) use HttpRequest to build and format the request to be sent to a server.
2) use HttpResponse to collect and convert the response data into an easier-to-use format.

Conversely, when acting as a server:
1) use HttpRequest to collect incoming requests from clients.
2) use HttpResponse to build and format the responses to be sent back to the clients.

The techniques for sending requests and receiving responses or receiving requests and sending responses
are very similar and follow the pattern in the following code.

https://github.com/Dyalog/library-conga

15

clt←DRC.Clt '' address port 'HTTP' ⍝ start a client in HTTP mode

req←⎕NEW #.HttpUtils.HttpRequest ⍝ create a new request

req.(Command Uri)←'GET' 'http://some-address' ⍝ set some fields

:If 0=⊃DRC.Send clt req.Format ⍝ format and send the request
 :Repeat
 :If ~done←0≠err←1⊃rc←DRC.Wait clt 5000 ⍝ standard Conga loop

 (err obj evt dat)←4↑rc ⍝ break out the results

 :Select evt ⍝ which Conga event?
 :Case 'Connect'
 resp←⎕NEW #.HttpUtils,HttpResponse ⍝ create the response container

 :Case 'HTTPHeader'
 resp.CongaHttpHeader dat ⍝ process the message headers

 :Case 'HTTPBody'
 resp.CongaHttpBody dat ⍝ process the message body

 :Case 'HTTPChunk'
 resp.CongaHttpChunk dat ⍝ process the a chunk of the message

 :Case 'HTTPTrailer'
 resp.CongaHttpTrailer dat ⍝ process the message trailers

 :EndSelect
 :EndIf
 :Until done∨resp.IsComplete ⍝ do we have the complete resposnse?
:EndIf

At this point we have all of the response data in public fields of the HttpResponse instance.

 resp.(HttpStatus HttpStatusText)
┌───┬──┐
│200│ok│
└───┴──┘

 resp.Headers ⍝ HTTP headers
┌────────────────┬───┐
│cache-control │private │
├────────────────┼───┤
│content-type │text/html │
├────────────────┼───┤
│content-encoding│gzip │
├────────────────┼───┤
│vary │Accept-Encoding │
├────────────────┼───┤
│server │Microsoft-IIS/8.5 │
├────────────────┼───┤
│set-cookie │ASPSESSIONIDCATBDSCB=ANDNFICBLDIEHFOOINJHFOAL; path=/│
├────────────────┼───┤
│x-powered-by │ASP.NET │
├────────────────┼───┤
│date │Tue, 27 Jun 2017 12:34:02 GMT │
├────────────────┼───┤
│content-length │370 │
└────────────────┴───┘

16

 resp.Data ⍝ response data (edited for presentation here)
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Some really cool place</title>
</head>
<body bgcolor="#FFFFFF">
<p align="center"></p>
<p align="center"> </p>
<p align="center">Some really cool place...coming soon!
</p>
</body>
</html>

	Conga 3.1 User Guide – Supplement
	Introduction
	Using the Conga User Guide

	New Features of Version 3.0
	Compatibility and Code Distribution
	Initialisation

	New Features in Conga 3.0
	1. Multiple Isolated Roots
	2. New Server Modes
	2.a FIFOMode
	2.b ConnectionOnly

	3. Timeout and Close as Events
	4. Temporarily Prevent New Connections to a Server
	5. Sent event
	6. File Transmission
	7. HTTP Protocol Support
	8. Web Sockets
	Web Socket Upgrade – Client Side
	Web Socket Upgrade – Server Side
	Transmitting Data on a Web Socket

	9. Allow or Deny Connections from Specific Address Ranges
	10. Support for GnuTLS 3.5.16
	11. Dynamic Loading of Secure Socket Libraries
	12. Shared Unicode/Classic Library
	13. Simple Configuration
	13. Numeric Version Property
	14. Experimental UDP Support
	15. Numerous New Samples
	Directory CertTool
	Directory HttpServers
	Directory RPCServices

	HTTP Protocol Support
	Enabling the HTTP Protocol
	Receiving HTTP Messages
	Sending HTTP Messages
	HTTP Utility Libraries

